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ABSTRACT
This paper presents the Merlin network management frame-
work. With Merlin, administrators express network policy
using programs in a declarative language based on logical
predicates and regular expressions. The Merlin compiler au-
tomatically partitions these programs into components that
can be placed on a variety of devices including switches,
middleboxes, and end hosts. It uses a constraint solver and
parameterizable heuristics to allocate resources such as paths
and bandwidth. To ease the administration of federated net-
works, Merlin provides mechanisms for delegating manage-
ment of sub-policies to tenants, along with tools for veri-
fying that delegated sub-policies do not violate global con-
straints. Overall, Merlin simplifies the task of network ad-
ministration by providing high-level abstractions for directly
specifying network policy.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Network operating systems;
D.3.2 [Language Classifications]: Specialized application
languages

Keywords
Software-defined networking, program partitioning, delega-
tion, verification, Merlin.

1. INTRODUCTION
To manage a network today, administrators must carefully

configure different pieces of software written in multiple lan-
guages executing on a variety of machines. For example, a
typical data center network might use end hosts to filter and
rate-limit traffic based on packet headers, special-purpose
middleboxes to inspect packet payloads for malicious pat-
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terns, and a software-defined networking (SDN) controller to
install forwarding rules on switches. Network management
is further complicated by the fact that networks are expected
to accommodate the needs of tenants, who may require qual-
ity of service guarantees, specialized security policies, or
custom allocations of resources for particular applications.

Consequently, network administration has become increas-
ingly complicated and error-prone. In response, a number of
recent projects have attempted to raise the level of abstrac-
tion for specifying network functionality, through the use of
programmable switches [6, 17, 29], middleboxes [14, 26,
35, 36], or end hosts [7, 24, 38]. Although these approaches
have made great strides towards easing the burden on net-
work administrators [23], each offers only a partial solution
to the general problem. Because they focus exclusively on a
single component of the network, they do not allow admin-
istrators to program the network as a unified entity. As a re-
sult, there is a disconnect between the high-level properties
that administrators want to guarantee (e.g., filter all traffic
against a given pattern) and how that functionality is realized
on multiple devices (e.g., configure routers and switches so
that all traffic traverses at least one middlebox).

The vision advocated in this paper is to provide a uni-
fied framework for controlling all of the components in the
network—a truly programmable network. As a first step to-
ward this goal, we present the Merlin network management
framework. With Merlin, administrators express policies
in a high-level, declarative language. The Merlin compiler
uses program partitioning to transform global policies into
smaller sub-policies that are automatically distributed to the
different components in the network for enforcement. Man-
agement of sub-policies may be delegated to tenants, who
can modify them to reflect their own custom requirements.
Merlin provides mechanisms for verifying that a sub-policy
modified by a tenant conforms to global policy set down by
the administrator. This allows federated networks to be man-
aged within a single administrative framework.

The Merlin language is based on regular expressions (with
operators for union, concatenation, and Kleene star)—a nat-
ural syntax for describing paths through a network. In addi-
tion, using regular expressions provides two important ben-
efits. First, it facilitates encoding Merlin policies as con-
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straint problems whose solutions can be used to determine
the placement of the components that enforce policy or pro-
vide functionality. Second, it enables verifiable policy dele-
gation as Merlin can determine if a sub-policy modified by a
tenant conforms to the original.

Overall, Merlin simplifies network administration by pro-
viding high-level abstractions for specifying network-wide
policies, freeing administrators from having to worry about
low-level implementation details.

2. THE MERLIN LANGUAGE
The Merlin language provides programmers with a rich

collection of constructs that allow them to specify the in-
tended behavior of the network at a high-level of abstrac-
tion. The following example, which states that all TCP traffic
between a given pair of hosts must pass first through a net-
work address translator (nat), then a deep packet inspector
(dpi), and abide by a rate limit of 100Mb/s, illustrates the
main features of the language:

( ipSrc = 192.168.1.1 and
ipDst = 192.168.1.2 and
ipProto = 0x06 )

-> ( .* nat .* dpi .* )
at max(100Mb/s)

A Merlin policy is a collection of statements that spec-
ify the handling of a subset of network traffic. The policy
grammar is defined in Figure 1. We assume that statements
are disjoint and total—that is, no two statements specify the
handling of overlapping sets of packets, and every packet is
handled by some statement. In the Merlin implementation,
these well-formedness conditions are guaranteed by a sim-
ple pre-processor. Each statement comprises several com-
ponents: the left side of the arrow (->) is a logical predi-
cate that describes a set of packets, while the right side of
the arrow is a regular expression that specifies the forward-
ing paths and transformations which should be applied to
matching packets and an optional bandwidth constraint.

Logical Predicates. Merlin supports a rich predicate lan-
guage for classifying network traffic. An atomic predicate of
the form f = n denotes the set of packets whose header field
f is equal to n. For example, in the policy above, the predi-
cate matches packets with IP source address 192.168.1.1,
IP destination address 192.168.1.2, and protocol TCP
(0x06). Merlin provides atomic predicates for fields in a
number of standard protocols including Ethernet, IP, TCP,
and UDP, and a special field for matching packet payloads.
Predicates can also be built up using standard boolean oper-
ators such as conjunction (and), disjunction (or), and nega-
tion (!).

Location quantifiers. Predicates may be optionally pre-
ceded by a location quantifier that determines how traffic
from different sources is classified. To illustrate, consider

loc ∈ Locations
t ∈ Transformation Functions

pol ::= (s1; . . . ; sn) Policy
s ::= q p → e at r Statement
q ::= forall | exists Quantifier
p ::= m | p1 and p2 | p1 or p2 | ! p1 Predicate
m ::= f = n Match
e ::= . | c | e e | e|e | e∗ | ! e Path Expression
c ::= loc | t Path Character
r ::= max(n)? min(n)? Rate

Figure 1: Merlin policy language syntax.

the following policy, which forwards traffic from sources h1
and h2 to a destination h3 with a bandwidth cap:

true -> (h1|h2) .* h3 at max(100Mb/s)

With the forall quantifier, the constraints are applied col-
lectively to traffic from any source by dividing the bandwidth
equally among all paths. Effectively, h1 and h2 would both
be capped by 50Mb/s. With the exists quantifier, the con-
straints are applied to traffic along some single path, and
all other traffic is dropped. So, either the path starting at
h1 would be capped at 100Mb/s, or the path starting at h2
would be capped at 100Mb/s. If no quantifier is specified for
a statement, the Merlin compiler implicitly treats the state-
ment as being annotated with exists.

Regular expressions. Merlin enables programmers to spec-
ify forwarding paths for selected classes of network traffic
using regular expressions. Regular expressions are a natu-
ral and well-studied mathematical formalism for describing
paths through a graph (such as a finite state automaton or a
network topology). However, rather than matching strings of
characters as with ordinary regular expressions, Merlin regu-
lar expressions match sequences of network locations as well
as names of transformations, as described below. The com-
piler is free to select any matching path to forward traffic as
long as the other constraints expressed by the policy are sat-
isfied. We assume that the set of locations is finite. As with
POSIX regular expressions, the dot symbol (.) matches a
single element of the set of all locations. Note that there is an
implicit relationship between certain predicates and expres-
sions. For example, if h1 has IP address 192.168.1.1,
then the predicate ipSrc = 192.168.1.1 implies that
the associated expression must start at h1, even if the pro-
grammer has not explicitly written the expression that way.

Transformations. Merlin regular expressions may also con-
tain names of packet-processing functions that transform the
headers and contents of packets. Such transformations can
be used to implement a variety of useful operations includ-
ing deep packet inspection, network address translation, load
balancing, traffic accelerators, caches, proxies, rate limiters,
and many others. The Merlin compiler determines the loca-
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Figure 2: The NFA and graph encoding of the MIP for-
mulation for the example policy. The thick, red path il-
lustrates a solution.

tion where each transformation is enforced, using a mapping
from transformation names to possible locations supplied as
an auxiliary input. The only requirements on these trans-
formations are: (i) they must take a single packet as input
and generate zero or more packets as output, and (ii) they
must only access local state. In particular, the restriction to
local state ensures that the compiler can freely place trans-
formations inside the network without having to worry about
maintaining global state.

Bandwidth. Finally, Merlin policies may specify the net-
work traffic rates with a bandwidth limit (max), a bandwidth
guarantee (min), or both. By convention, policies without a
rate clause are unconstrained—policies that lack a minimum
rate are not guaranteed any bandwidth, and policies that lack
a maximum rate may send traffic at rates up to line speed.
Bandwidth limits and guarantees differ from transformations
in one important aspect: they represent an explicit allocation
of global network resources. Hence, special care is needed
when compiling them.

3. COMPILATION
The Merlin compiler performs two main tasks: (i) it maps

policies to constraint problems that can be solved using lin-
ear programming to determine forwarding paths, transfor-
mation placement, and bandwidth allocation; and (ii) it gen-
erates the low-level instructions needed to realize the policy
using the switches, middleboxes, and end hosts available in
the network.

Constraint Problem. In general, the Merlin compiler has
substantial flexibility in determining which forwarding paths
to use, where to place transformations, and how to allocate
bandwidth. However, because Merlin offers a unified frame-
work for programming the entire network, it must balance
all of these concerns simultaneously. To do this, the Merlin

compiler encodes the input policy and the network topology
into a constraint problem whose solution, if it exists, can be
used to determine the configuration of each network device.

Placement constraints. Recall that a statement in the Mer-
lin language contains a regular expression which constrains
the set of forwarding paths and transformations that may be
used to satisfy the statement. We refer to these as place-
ment constraints. To facilitate the search for routing paths
that satisfy the placement constraints, the compiler repre-
sents them internally using a collection of directed graphs
Gi whose paths correspond to paths in the physical network
that respect the placement constraints for statement i.

The regular expression ei in statement i is over the set of
locations and transformations. The first step in the construc-
tion of Gi is to map ei into a regular expression ēi over the
set of locations (only) using a simple substitution: for every
occurrence of a transformation, we substitute the union of all
locations associated with that transformation. For example,
if h1, h2, and m1 can implement network address transla-
tion, then the expression (.* nat .*) would be trans-
formed into (.* (h1|h2|m1) .*). The next step is to
transform the regular expression ēi into a non-deterministic
finite automaton1 (NFA), denotedMi, that accepts precisely
the set of strings in the regular language given by ēi.

Let L denote the set of locations in the physical network
and Qi denote the state set of Mi. The vertex set of Gi
is the Cartesian product L × Qi together with two special
vertices {si, ti} that serve as the universal source and sink
for paths representing statement i. There is an edge from
(u, q) to (v, q′) in Gi if and only if: (i) u = v or (u, v) is an
edge of the physical network, and (ii) (q, q′) is a valid state
transition of Mi when processing v. Similarly, there is an
edge from si to (v, q′) if and only if (q0, q′) is a valid state
transition of Mi when processing v, where q0 denotes the
start state of Mi. Finally, there is an edge from (u, q) to
ti if and only if q is an accepting state of Mi. Paths in Gi
correspond to paths in the physical network that satisfy the
placement constraints of statement i, in a sense made precise
by the following lemma.

LEMMA 1. A sequence of locations u1, . . . , uk satisfies
the placement constraint given by ēi if and only if Gi con-
tains a path of the form si, (u1, q1), (u2, q2), . . . , (uk, qk), ti
for some state sequence q1, . . . , qk.

Figure 2 illustrates the construction of the graph Gi for a
statement with the regular expression

h1 .* nat .* dpi .* h2

in the example network illustrated in the left-hand side of
Figure 2. We assume that network address translation (nat)
can be implemented at h1, h2, or m1, whereas deep packet
1For technical reasons, we require a NFA without ε-moves. See
Hopcroft and Ullman’s textbook [21] for a discussion of ε-moves
and techniques for eliminating them.
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inspection (dpi) can only be implemented at m1. Paths
matching the regular expression can be “lifted” to paths in
Gi; the thick, red path in the figure illustrates one such lift-
ing. Notice that the physical network also contains other
paths such as h1, s1, h2, which do not match the regular
expression. These do not lift to any path in Gi. For instance,
focusing attention on the rows of nodes corresponding to
states q2 and q3 of the NFA, one sees that all edges between
these two rows lead into node (m1,q3). This, in turn, means
that any path that avoids m1 in the physical network cannot
be lifted to an si-ti path in the graph Gi.

Path selection. Next, given a set of bandwidth demands
and specified link capacities, the compiler finds a satisfy-
ing assignment of paths while respecting the placement con-
straints. The problem bears a similarity to the well-known
multi-commodity flow problem [1], with two additional types
of constraints: (i) integrality constraints demand that only
one path may be selected for each statement, and (ii) place-
ment constraints are specified by regular expressions, as dis-
cussed above. To incorporate placement constraints, we for-
mulate the problem in the graph G =

⋃
i Gi described above,

rather than in the physical network itself. Incorporating inte-
grality constraints into multi-commodity flow problems ren-
ders them NP-complete in the worst case, but a number of ap-
proaches have been developed over the years for surmount-
ing this problem, ranging from approximation algorithms [8,
10, 12, 25, 27], to the use of mixed integer programming [4].
Our current implementation adopts the latter technique.

Our mixed integer program (MIP) has one {0, 1}-valued
decision variable xe for each edge e of G. Selecting a route
for each statement corresponds to selecting a path from si to
ti for each i and setting xe = 1 on the edges of those paths,
xe = 0 on all other edges of G. These variables must satisfy
the flow conservation equations

∀v ∈ G
∑

e∈δ+(v)

xe −
∑

e∈δ−(v)

xe =


1 if v = si

−1 if v = ti

0 otherwise

(1)

where δ+(v), δ−(v) denote the sets of edges exiting and en-
tering v, respectively. To express the capacity constraint for
a link (u, v) in the physical network, let cuv denote its capac-
ity and let Ei(u, v) denote the set of all edges of the form
((u, q), (v, q′)) or ((v, q), (u, q′)) in Gi. The capacity con-
straints are given by

∀(u, v)
∑
i

∑
e∈Ei(u,v)

riminxe ≤ cuv (2)

where rimin denotes the minimum amount of bandwidth guar-
anteed in the rate clause of statement i.

The compiler allows the user to define an optimization
criterion that determines which route assignments should be
preferred among those satisfying the placement and band-
width constraints. The system currently implements three
such criteria: (a) weighted shortest path minimizes the to-

tal number of network hops in the assigned routes, weighted
by the amount of guaranteed bandwidth. The user may wish
to use this criterion when the goal is to minimize latency,
since paths with a greater number of network hops tend to
experience increased latency; (b) min-max ratio minimizes
the maximum fraction of capacity reserved on any link (i.e.,
rmax). This criterion is appropriate when the goal is to bal-
ance load across the network links; (c) min-max reserved
minimizes the maximum amount of bandwidth reserved on
any link (i.e., Rmax). This criterion may be sensible when
the goal is to protect against failures, since it limits the amount
of traffic that may disrupted by a single link failure.

Code Generation. After the Merlin compiler has deter-
mined a placement for the system components, it generates
the appropriate code for the specific enforcement mecha-
nism. Below, we briefly identify enforcement strategies for
each target type, using readily available mechanisms:

• Switches. For basic forwarding, Merlin generates in-
structions for OpenFlow [29] switches and controllers
that install forwarding rules and configure port queues
with bandwidth guarantees.

• Middleboxes. Richer functions can be implemented by
replicating virtual machines [18, 35], or by installing
software for middlebox platforms. Merlin currently
generates Click [26] modules.

• End-hosts. Functionality such as traffic filtering or rate
limiting is implemented with standard Linux utilities
such as iptables and tc.

Merlin can be configured to use the specific enforcement
mechanisms available in a particular network. While the ex-
pressiveness of policies is bounded by the capabilities of the
available devices, Merlin provides extensible mechanisms
for generating target code, and a common interface for pro-
gramming heterogeneous devices.

4. POLICY TRANSFORMATIONS
One of the main advantages of using a high-level language

to specify network functionality is that the same abstrac-
tions that allow policies to be mapped to constraint prob-
lems (i.e., predicates, regular expressions, and explicit band-
width reservations and caps), can also be exploited to sup-
port transformations on policies, including delegation and
distribution. Moreover, the correctness of these transforma-
tions can be verified automatically.

Delegation. In many networks, administrators would like
to be able to delegate control of a sub-network to tenants.
Such a sub-network might be specified in terms of a set of
nodes in the physical topology, or a set of packets with speci-
fied header fields. At the same time, tenants would often like
to impose custom policy requirements. For example, a cus-
tomer in a cloud data center might want to ensure that every
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packet is scanned by a deep packet inspection engine. Or, the
customer might want to be able to manage the bandwidth al-
located to individual virtual machines—e.g., the web server
might get a larger share of the customer’s aggregate band-
width than other machines.

Merlin allows administrators to delegate policies to ten-
ants who may then refine them. To delegate a policy, the
administrator first intersects the predicates and paths to re-
strict it to a particular sub-network. For example, suppose
the global policy is as follows:

( ipSrc = 192.168.1.1 and
ipProto = 0x06)

-> .* h3 at max(100Mb/s)

The tenant could then customize this policy for their partic-
ular needs. For example, they might wish to require web
traffic to traverse a monitoring middlebox, and allocate ad-
ditional bandwidth to web and ssh traffic:

( ipSrc = 192.168.1.1 and
ipProto = 0x06 and tcpDst = 80)

-> .* dpi .* h3 at max(50Mb/s)

( ipSrc = 192.168.1.1 and
ipProto = 0x06 and tcpDst = 22)

-> .* dpi .* h3 at max(25Mb/s)

( ipSrc = 192.168.1.1 and
ipProto = 0x06 and
!(tcpDst = 22 | tcpDst = 80))

-> .* dpi .* h3 at max(25Mb/s)

The tenant could then return this modified policy to the ad-
ministrator, who would integrate it into the global policy.

Verification. In general, allowing tenants to modify poli-
cies would not be safe. For example, a tenant could lift re-
strictions on forwarding paths, eliminate transformations, or
allocate more bandwidth to their own traffic—all violations
of the global policy set down by the administrator. The Mer-
lin language is designed to support checking policies for in-
clusion, which can be used to establish the correctness of
policy transformations implemented by untrusted tenants.

Intuitively, a valid refinement of a policy is one that makes
it only more restrictive. To verify that a policy modified
by a tenant is a valid refinement of the original, one simply
has to check that for every statement in the original policy,
(i) the set of paths allowed for matching packets in the re-
fined policy is included in the set of paths in the original,
and (ii) the bandwidth constraints in the refined policy im-
ply the bandwidth constraints in the original. To decide these
conditions, Merlin uses a simple algorithm that performs a
pair-wise comparison of all statements in the original and
modified policies, (i) checking for language inclusion [21]
between the regular expressions in statements with overlap-
ping predicates, and (ii) checking that the sum of the band-
width constraints in all overlapping predicates implies the
original constraint.

Distribution. Another use of delegation in Merlin is for ob-
taining efficient and scalable enforcement of network-wide
policies. As an example, consider a policy that specifies an
aggregate bandwidth cap on a pair of hosts managed by dif-
ferent tenants:

forall
( ipSrc = 192.168.1.1 or
ipSrc = 192.168.1.2 )
-> .* at max(100Mb/s)

Enforcing this policy requires maintaining packet counts of
traffic from both hosts. An easy option is to use a middlebox
that can accurately keep track of the bandwidth usage for
both hosts. But a centralized enforcement mechanism can
become a bottleneck at sufficiently high traffic loads. On
the other hand, distributing enforcement to end-hosts can re-
duce contention for network devices [13]. To enforce the
cap on end-hosts, the Merlin compiler partitions the overall
bandwidth allocation to each host—otherwise the individ-
ual hosts would be able to generate traffic that exceeds the
aggregate. By default, the compiler transforms this policy
into one where the location quantifier has been eliminated,
and the bandwidth has been distributed evenly between the
hosts, as described in Section 2:

( ipSrc = 192.168.1.1 )
-> .* at max(50Mb/s)

( ipSrc = 192.168.1.2 )
-> .* at max(50Mb/s)

Of course, an equal split may not be the best allocation of
bandwidth. For example, allocating more bandwidth to the
second tenant may be better:

( ipSrc = 192.168.1.1)
-> .* at max(80Mb/s)

( ipSrc = 192.168.1.2)
-> .* at max(20Mb/s)

Alternatively, the tenants could cooperate to do fine-grained
allocations of bandwidth in response to current traffic con-
ditions, as in systems such as EyeQ [24]. Using Merlin’s
delegation mechanisms, the tenants can use any strategy of
their choosing, as long as the final policies generated by the
two tenants are valid refinements of the original policy.

By delegating functionality to tenants, Merlin relocates
enforcement of network-wide properties to tenants, and ob-
viates the need for the compiler to maintain distributed state.
However, distributed enforcement involves an inherent trade-
off: it increases scalability, but risks under utilizing resources
if the static allocations do not reflect actual usage. Mer-
lin provides a framework that allows tenants to manage this
trade-off themselves, while giving the administrator a means
to verify that the distributed policies conform to the original.

5. EXAMPLES
To illustrate the expressiveness of the Merlin language, we

present several examples based on realistic network policies.
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MapReduce guarantees. MapReduce [11] uses a many-
to-many communication pattern during its shuffle phase that
results in heavy network load. Consequently, MapReduce
is sensitive to background traffic in data centers, especially
with protocols such as UDP that lack congestion control [5,
24]. Merlin can guarantee a minimum quality of service for
MapReduce traffic:

( ipSrc = 192.168.1.1/16 and
ipDst = 192.168.1.1/16 and
ipProto = 0x06 and tcpDst = 50060 )

-> .* at min(100Mb/s)

IP multicast control. Monitoring applications often rely
on IP multicast to transmit updates. But switches can only
store a limited number of multicast addresses, and must of-
ten resort to flooding multicast packets. Instead, the ad-
ministrator could maintain multicast groups—sets of mul-
ticast addresses with common subscribers—and compress
each group to a single address [39]. Merlin can slot mul-
ticast group traffic through such a compression function and
enforce a rate limit:

forall
( ipDst = 224.0.0.1 or

ipDst = 224.0.0.2 )
-> compress .* at max(10Gb/s)

Resource isolation. Many regulatory guidelines require cor-
porations to keep different parts of their businesses com-
pletely separate. For example, the Sarbanes-Oxley Act re-
quires that the investment side of banks be kept completely
separate from the brokerage side of the company. Regula-
tions in healthcare such as HIPAA are similar. Hence, cor-
porate networks must often ensure that traffic from different
portions of the network never traverse the same middlebox.

forall ( ipSrc = 192.168.1.1/8 )
-> .* m1 .*

forall (!ipSrc = 192.168.1.1/8 )
-> !(.* m1 .*)

Defense in depth. A common security practice, known as
defense in depth, constructs trustworthy systems by layering
less trustworthy components. The following policy captures
this approach by routing all traffic through two diverse fire-
wall implementations, without enforcing a particular order-
ing:

forall true
-> ( .* fire1 .* fire2 .*

| .* fire2 .* fire1 .* )

In summary, Merlin allows administrators to specify a di-
verse set of policies that can enforce bandwidth caps, pro-
vide bandwidth guarantees, indicate packet transformations,
and dictate forwarding paths.

6. RELATED WORK
A number of systems in recent years have proposed mech-

anisms for specifying and implementing advanced function-
ality in a network such as bandwidth caps and guarantees [3,
32, 37], traffic filters [22, 34], or forwarding policies [19,
20, 30]. Merlin builds on these systems by providing a uni-
fied interface for controlling many different kinds of devices
including switches, middleboxes, and end hosts.

Several other systems have explored programming abstrac-
tions for switches [6, 17, 29], middleboxes [14, 26, 35, 36],
and end hosts [7, 24, 38]. Notably, languages such as Fre-
netic [17, 16], Pyretic [31], and Maple [40], provide con-
structs for programming OpenFlow switches. In particular.
Merlin’s syntax based on predicates and regular expressions
resembles constructs in Frenetic and NetKAT [17, 2]. Com-
pared to these languages Merlin is more general—in addi-
tion to configuring switches, it allows administrators to spec-
ify middlebox functionality, manage end hosts, control allo-
cation of bandwidth, and delegate policies.

The SIMPLE system [33] uses a linear programming for-
mulation to load balance the network with respect to TCAM
space and CPU usage, but does not specify the programming
interface to the framework, nor how policies are represented
and analyzed. The PANE system [15] allows end hosts to
make explicit requests for network resources like bandwidth,
but does not provide mechanisms for partitioning function-
ality across a variety of devices.

Program partitioning has been used in other contexts, in-
cluding web applications and distributed computing [9, 28].

7. OUTLOOK
In ongoing work, we are investigating how to extend Mer-

lin’s forwarding policies to support compositional syntax, as
well as new primitives that can encode features such as mul-
ticast. We are also investigating uses of authentication logic
with Merlin policies in the context of delegation.

Overall, Merlin allows administrators to specify the func-
tionality of an entire network at a suitably high level of ab-
straction, leaving the low-level details related to the config-
uration of individual components to the compiler. At the
same time, Merlin provides tenants with the freedom to tai-
lor policies to their particular needs, while assuring admin-
istrators that the constraints expressed by global policies are
enforced. This approach significantly simplifies network ad-
ministration, and provides a foundation for a variety of fu-
ture research on network programmability.
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